

Student Number:

St. Catherine's School

Waverley

August 2010

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working Time 2 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Complete each section in a separate booklet

- Attempt Questions 1 7
- All questions are of equal value
- Ouestions to presented in Sections:

Booklet 1 - Questions 1-2

Booklet 2 - Questions 3-4

Booklet 3 - Questions 5-6

Booklet 4 - Question 7

Total Marks – 84

STANDARD INTEGRALS

$$\int x^n \ dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} \, dx \qquad = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \ dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

Marks

2

Total marks -120

Attempt Questions 1-10

All questions are of equal value

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 1 (12 marks) (Use Writing Booklet 1) Marks

1

- Differentiate $\tan^{-1} \frac{x}{2}$
- Given that $\cos \alpha = \frac{5}{13}$ find the value of $\cos 2\alpha$
- Consider the cubic equation $x^3 7x 6 = 0$. If two roots of this equation are -1 and 3, find the third root.
- Find $\frac{d}{dx}(x^2e^{-x^2})$
- The acute angle between the lines y = (m+2)x and y = mx is 45°
 - Show that $\left| \frac{2}{m^2 + 2m + 1} \right| = 1$
 - Hence find the possible values for m
- Use the substitution $u=1+\ln x$ to evaluate

$$\int_{1}^{e} \frac{1}{x} (1 + \ln x)^{3} dx$$

The variable point $P(t+1, 2t^2+1)$ lies on a parabola.

St Catherine's School, Waverley

Question 2 (12 marks)

Find the Cartesian equation of the parabola.

(Use Writing Booklet 1)

- Solve the equation $\frac{2x+3}{x-4} \le 1$ 2
- 2
- Evaluate $\int_{-2}^{\pi} 2\cos^2 \frac{x}{4} dx$ 2
- Find the coefficient of x^5 in the binomial expansion of $\left(x^2 + \frac{2}{x}\right)^{1/3}$ 2
- A(-3,4) and B(1,2) are two points. Find the coordinates of the point (x,y)2 which divides the interval AB externally in the ratio 3:1

2

Question 3 (12 marks)

(Use Writing Booklet 2)

Marks

1

- (a) Consider the function $f(x) = \frac{x-2}{x-1}$
 - (i) Show that the function is increasing for all values of x in the function's domain. 2
 - (ii) Sketch the graph of the function showing clearly any intercepts on the
 coordinate axes and the equations of any asymptotes.
 - (iii) Find the equation of the inverse function $f^{-1}(x)$
 - (iv) Deduce, from your result in (iii), that the graph of the function f(x) is symmetrical about the line y = x
- (b) Consider the function $y = \frac{1}{2}\cos^{-1}(x-1)$
 - (i) Find the domain and range of the function.
 - (ii) Sketch *neatly* the graph of the function, showing clearly the coordinates of the end points.
 - (iii) The region in the first quadrant bounded by the curve $y = \frac{1}{2}\cos^{-1}(x-1)$ and the coordinate axes is rotated through 360° about the y axis.
 - Find the volume of the solid of revolution, giving your answer in simplest exact form

Questi	ion 4	(12 marks) (Use Writing Booklet 2)	Marks
(a)	Consi	der the equation $4e^{-x} - \tan x + 1 = 0$ which has a root $x = \alpha$	
	(i)	Show that $1 < \alpha < 1.5$	1
	(ii)	Using $x = 1$ as a first approximation of the root use one application of Newton's method to find a better approximation of this root.	3
		Write your answer correct to 4 significant figures	
(b)		ate of growth of a bacteria colony is proportional to the excess of the colony's ation over 5000 and is given by	
		$\frac{dN}{dt} = k(N - 5000)$ where k is a positive constant and t is the time in days	
	(i)	Show that $N = 5000 + Ae^{kt}$ is a solution of the above differential equation.	1
	(ii)	If the initial population is 15000, and it reaches 20000 after 2 days, find the value of A and k	3
	(iii)	Hence, calculate the expected population after a further 5 days.	1
(c)	A con	nmittee of 3 women and 7 men are to be seated randomly at a round table	
	(i)	What is the probability that the three women are seated together.	1
			•

The committee elects a President and a Vice President. What is the

probability that they are seated opposite one another.

Question 5 (12 marks) (Use Writing Booklet 3)

Marks

2

2

2

- (a) Use mathematical induction to prove to prove that for all $n \ge 2$
 - $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{(n-1)}{n!} = 1 \frac{1}{n!}$
- (b) Show that $\frac{d^2x}{dt^2} = \frac{d}{dx}(\frac{1}{2}v^2)$
- (c)' A particle moves in a straight line so that, when x m from an origin, its acceleration is given by $-9e^{-2x}$ ms^{-2} . Initially, it is at the origin where the velocity is 3 ms^{-1} .
 - (i) Determine the velocity as a function of x in simplest form, justifying any choice you may have to make.
 - (ii) Determine x as a function of t, where t is the number of seconds after it leaves the origin.
 - (iii) Find the particle's velocity and acceleration 3 seconds after leaving the origin.

Question 6 (12 marks) (Use Writing Booklet 3)

Marks

1

1

2

3

- (a) A particle's motion is defined by the equation; $v^2 = 12 + 4x x^2$, where x is its displacement from the origin in metres and v its velocity in ms^{-1} . Initially the particle 6 metres to the right of the origin.
 - (i) Show that the particle is moving in Simple Harmonic Motion
 - Find the centre, period and amplitude of the motion
 - The displacement of the particle at any time t is given by the equation. $x = a\sin(nt + \alpha) + b$

Find the values of α and b, given $0 \le \theta \le 2\pi$

(b) A golfer hits a golf ball from a point O with velocity 40 m/s at an angle Θ to the horizontal. The ball travels in a vertical plane where the acceleration due to gravity is 10 ms^{-2} .

- (i) Write down expressions for the horizontal displacement x metres, and the vertical displacement y metres, of the golf ball from O after time t seconds.
- (ii) Hence show that the horizontal range, R metres, of the golf ball until it returns to ground level is given by $R = 160 \sin 2\theta$
- (iii) The golfer is aiming over horizontal ground at a circular green of radius 10 metres, with the centre of the green 110 metres from O. Find the possible set of values of θ for the ball to land on the green, giving your answers correct to the nearest degree.

(Use Writing Booklet 4)

Marks

- Four dice are rolled simultaneously. Any die showing a 6 on the uppermost face is set aside, and the remaining dice are rolled again. (Note: a die has six faces numbered 1 to 6 with each face equally likely to fall uppermost)
 - Find the probability (correct to 2 decimal places) that after the first roll 1 of the dice, exactly one of the four dice is showing a 6 on the uppermost face.
 - Find the probability (correct to 2 decimal places) that after the second roll 3 of the dice exactly two of the four dice are showing a 6 on the uppermost face.
- - An Integral is defined by $I_n = \int_{0}^{\infty} \frac{x^n}{1+x^2} dx$, for $n \ge 0$
 - 1. Evaluate I_0
 - (2.) Use part (i) to show that $I_n + I_{n+2} =$
 - 3. Evaluate I_2
- - Find the greatest coefficient in the expansion of $\left(1+\frac{x}{2}\right)^{3n}$, (n a positive integer).

END of PAPER

Q	Solution	Marks/Comments
1a)	$y = \tan^{-1}\left(\frac{2\ell}{2}\right)$	
	$\frac{dy}{dx} = \frac{1}{1 + \left(\frac{x}{2}\right)^{\gamma}} \cdot \frac{1}{2}$	
	$=\frac{4}{4+x^2}\cdot\frac{1}{2}$	
	= 2 4+22	1
1)	$\cos \alpha = \frac{5}{13}$	
	$\cos 2\alpha = 2\cos^2 \alpha - 1$ or use other definitions = $2\left(\frac{5}{13}\right)^2 - 1$ of $\cos 2\alpha$	1
	$=-\frac{1/9}{169}$	1
c)	$x^3 - 7x - 6 = 0$	
	$x^3 + ox^2 - 7x - 6 = 0$ (-) (+) (-)	
-	/et roots be -1,3,d $ -1+3+\alpha=0 \text{(or } -3\alpha=6 $ $ d=-2 \text{(or } -3\alpha=6 $,
	·	/
d)	$\frac{d}{dx}(x'e^{-x'})$ using product role $u=x^{\nu}$ $v=e^{-x'}$ $u'=2x$ $v'=-2xe^{-x'}$	1
	$\frac{d}{dx}(x^{2}e^{-x^{2}}) = \frac{(2xe^{-x}) + (-2x^{3}e^{-x^{2}})}{2xe^{-x^{2}}(1-x^{2})} \left[use \ vu' + uv' \right]$	
	$\frac{\partial R}{\partial x} = \frac{2x\left(1-x^2\right)}{e^{x^2}}$	

Q	Solution	Marks/Comments
1e)	(i) $+an+s^p = \left(\frac{m+2-m}{1+m(m+2)}\right)$	
		1
	$\frac{2}{m^{\nu}+2m+1}=\pm 1$	
,	$m^2 + \lambda m + 1 = 2$ or $-m^2 - 2m - 1 = 2$	1
	$m^{2} + 2m - 1 = 0$ i. $m^{2} + 2m + 1 = -2$ $m = -2 \pm \sqrt{8} \qquad m^{2} + 2m + 3 = 0$ $b^{2} - 4ac < 0 : no sols$	- i for not shorig (case 2)
	$m = -1 \pm \sqrt{2}$ or $m = 0.41 \frac{o(-2.4)}{(10.200)}$	1
f)	$I = \int_{1}^{e} \frac{1}{x} (1 + \ln x)^{3} dx \qquad u = 1 + \ln x$ $du = \frac{1}{x} dx$	L
	for x = e u = 2 $x = 1 u = 1$	1
	$T = \int_{1}^{2} u^{3} du$	
	$= \left[\frac{u^4}{4}\right]_1^2$	
	$= \frac{16}{4} - \frac{1}{4}$ $= 3^{3}/4$	
	y	

Q	Solution	Marks/Comments
2a)	P(t+1) 2t+1)	
	x = t + 1 - 0 $y = 2t' + 1 - 0$,
	from 0 t = X-1	,
	Subin (2) $y = 2(x-1)^2 + 1$ = $2(x^2 - 2x + 1) + 1$	
	$= 2(x-x+1)+1$ $= 2x^{2}-4x+3$	1
		,
6)	$\frac{2x+3}{x-4} \le 1 x \ne 4$	
	x by (x-4)"	
	$(2x+3)(x-4) \leq (x-4)^2$	1
	$2x^2 - 5x - 12 \le x^2 - 8x + 16$	± off for
	$(x-4)(x+7) \le 0$	20€4
	$-7 \leq \chi < 4$	1
	4	
c)		
	$\chi \to 0 \text{SX} \qquad \chi \to 0 \text{S} \text{3L} \text{I}$ $= \frac{3}{5} \lim_{x \to 0} \frac{\sin 3x}{3x}$	
	= 3	
d)	$I = \int_{0}^{\pi} 2\cos^{2}\frac{x}{4} dx \underline{\text{Note}} \cos^{2}\theta = \frac{1}{2} \left(1 + \cos 2\theta\right)$	
	$\therefore \cos^2 \frac{\chi}{4} = \frac{1}{2} \left(1 + \cos \frac{\chi}{2} \right)$	}
	· ·	
	$I = \int_{0}^{\pi} \left(1 + \cos\frac{x}{2}\right) dx \qquad \frac{\partial l}{\partial \cos^{2}\theta} = \cos2\theta + 1$	
	$= \left[x + 2 \sin \frac{x}{2} \right]_{0}^{\pi}$ $= \cos \frac{x}{2} + 1$	
	= T+2	1
	3 7	

Q	Solution	Marks/Comments
2e)	Note $T_{k+1} = {}^{n}C_{k}a^{n-k}b^{k}$ for $\left(x^{2} + \frac{2}{x}\right)^{n}$	
	$T_{k+1} = {}^{10}C_k (x^2)^{10-k} (\frac{2}{x})^k$	
	$= {}^{10}C_{K} \times \frac{20-2k}{x^{K}} \cdot \frac{2^{K}}{x^{K}}$	·
	= 10ck x ^{20-3k} . 2 ^k	1
	1. 20-3k = 5 15=3k	
	5 = K	1/2
	$T_{k+1} = {}^{10}c_5(\chi^2)^5(\frac{2}{\chi})^5$	$ \iota $
	: Coefficient is 10c5.25 (= 8064)	
<i>f</i>)	A(-3,4) $B(1,2)$ (x,y)	
	$\left(\frac{n_{x_1+m_{x_2}}}{m_{x_1}}\right)^3 \frac{n_{y_1+m_{y_2}}}{m_{x_2}}$	
	$P\left(\frac{3+3}{2}, \frac{-4+6}{2}\right)$ check (optional)	
	$P\left(\frac{3+3}{2}, \frac{-4+6}{2}\right)$ $P\left(3,1\right)$	1
	·	

Q	Solution	Marks/Comments
3 a)	$f(x) = \frac{x-2}{x-1} (x \neq 1)$	
(1)	$f'(x) = \frac{(x-i)-(x-2)}{(x-i)^2}$	1
	$= \frac{1}{(x-1)^2} > 0 \text{ for all } x \neq 1$ $\text{Since } (x-1)^2 > 0$	A
(1)	x=(2
(m)	Let $y = \frac{x-2}{x-1} \left(= f(x)\right)$ Inverse is $x = \frac{y-2}{y-1}$	
	$xy - x = y - 2$ $xy - y = x - 2$ $y(x-1) = x - 2$ $y = \frac{x-2}{x-1}$ $f'(x) = \frac{x-2}{x-1}$]
(v)	the function is the inverse of itself i. the function is symmetrical about y=x	1

Q	Solution	Marks/Comments
36)	$y = \frac{1}{2} \cos^{-1}(x - i)$	
()	$ \int_{f}! -1 \leq X - 1 \leq 1 $ $ 0 \leq X \leq 2 $ $ R_{f}! 0 \leq Y \leq \frac{\pi}{2} $	1
	Note: $0 \leq Cos^{-1}(x-1) \leq T$ $0 \leq \frac{1}{2}Cos(x-1) \leq \frac{T}{2}$	
(11)	(0,至) (4)	
	$\frac{1}{2}$ $(2,0)$	1
(m)	$y = \frac{1}{2} \cos^{-1}(x-1)$ 2. $\cos^{-1}(x-1) = 2y$	
	$\begin{array}{rcl} x_{-1} &=& \cos 2y \\ x &=& 1 + \cos 2y \end{array}$	1
	$V = \pi \int_{0}^{\frac{\pi}{2}} (1 + \cos 2y)^{2} dy$	
į	$= \pi \int_{0}^{\frac{\pi}{2}} (1 + 2\cos 2y + \cos^{2} 2y) dy$ $= \pi \int_{0}^{\frac{\pi}{2}} [1 + 2\cos 2y + \frac{1}{2}(1 + \cos 4y)] dy$	1
ļ	$= \pi \int_{0}^{\pi/2} \left(\frac{3}{2} + 2\cos 2y + \frac{1}{2}\cos 4y \right) dy$ $= \pi \int_{0}^{3y} + \sin 2y + \frac{1}{8}\sin 4y \right]_{0}^{\pi/2}$	
	$= \pi \left[\frac{3\pi}{4} + 0 + 0 \right] - \left(0 + 0 + 0 \right) \right]$	
	$= \frac{3}{4} \pi^2 \text{ Units}^3$	1

Q	Solution	Marks/Comments
4a)		
(1)	$f(x) = 4e^{-x} - \tan x + 1$	
	f(i) = 0.91411004 >0	
	f(1.5)=-12.20889 <0 1.16 d < 1.5	1
(n)	$now f 60 = -4e^{-x} - sec^{x}x$	1
	f'(t) = -4.897036585	
	$x_2 = 1 - \frac{f(1)}{f(1)}$	1
	$\chi_2 = 1 + \frac{6.9(411004)}{4.897036585}$	
	1, X2 = 1.187 (4 sig. figs)	1
	Note: f(1.187) = -0.255801167	
	which is closer to zero. than f(1) : is a better approximation	
e)	(1) N = 5000 + Aekt - 0	
	from @ Aekt = N-5000	
	Now dN = Aekt.k	1
	= k (N-5000)	
	(11) When $t = 0$ $N = 15000$	
	: 15000 = 5000 + Ae	1
	: A = 10000 : N = 5000 + 10000 E	-
	when t = 2 N = 20000	
	: 20000 = 5000 + 10000e 2k	1
	: e2k = 15000 = 1.5	
	$2k = \ln 1.5$	
	$-: k = \frac{101.5}{2} = 0.20273$	

Q	Solution	Marks/Comments
46)	when $t = 7$ $N = 5000 + 10000 e^{7 \times \frac{\ln 5}{2}}$ $= 46335 (nearest whole number)$	1
c.)	(1) M W W A If the three women are to M Sit together there are m essentially 8 items to m m m arrange around the table	
	$P(3 \text{ women stt-together}) = \frac{7.3!}{9!}$ $= \frac{1}{12}$	1
	$(1) \times \times$	1
	Note: Once P& VP have been seated opposite one another there are 8 seats left to fill .: 8!	
	•	

Q	Solution	Marks/Comments
5a)	From $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{(n-1)}{n!} = 1 - \frac{1}{n!}$ $1 \ge 2$	
	Step 1 Prove true for n = 2	1
	$hHs = \frac{1}{2!} = \frac{1}{2}$ $hhs = 1 - \frac{1}{2!} = \frac{1}{2}$	1/2
	: true for n=2	
	step2 Assume true for $n = k (2 \le k < n)$	1/2
	$\frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{k!} = k!$	2
	Step3 Am to prove true for n=k+1	
	16. ATP. $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k-1}{k!} + \frac{k}{(k+1)!} = \frac{1}{(k+1)!}$	2
	$LHS. = 1 - \frac{1}{k!} + \frac{k}{(k+1)!} \left[L_{C,0} = (k+1)! \right]$	
	$= \frac{(k+1)! - (k+1) + k}{(k+1)!}$	1
	$= \frac{(k+i)! - 1}{(k+i)!}$	
	$= 1 - \frac{1}{(k+1)!}$	1
	= RH.S.	
	Step 4 1. true for n=k+1 if true for n=k	1
	Step 4 1. True for n = 2 Hen true for n = 34	
	Since true for n=2 then true for n=3,4,	12
	: by principal of mathematical induction	"
	true for n ≥ 2 (n integer)	

Q	Solution	Marks/Comments
Q 54)	$\frac{d^2x}{dt^2} = \frac{d}{dt} \cdot \frac{dx}{dt}$	
	$=\frac{dv}{dt}$	
	$= \frac{dv}{dn} \times \frac{dx}{at}$	1
	$= v \cdot \frac{dv}{d\kappa}$	
	= d (1v2) x dx	,
	$=\frac{d}{dx}\left(\frac{1}{2}v^{2}\right)$	
e)	Using part(b) $\frac{d(1)^2}{dn(2)^2} = -9e^{-2x}$	
	$\frac{1}{2}v^{2} = -9\int e^{-2x} dx$	
		1
	when $x=0$ $v=3$	
	$\frac{q}{2} = \frac{q}{2} + C$	
	$C = 0$ $\frac{1}{2}v^2 = \frac{9}{2}e^{-2x}$	
	$v^2 = 9e^{-2x}$	
	$v = \pm \sqrt{9e^{-2x}}$	1/2
	When $x = 0$ $v = 3$: $v = \sqrt{9}e^{-2x}$: $v = 3e^{-x}$	
	Could also justify the positive choice because	名
	initially velocity is positive and v never equals zero: must continue positive direction	on

Q	Solution	Marks/Comments
Q5C (11)	$\frac{dx}{dt} = 3e^{-xt} \text{from (1)}$	
	$\frac{dt}{dx} = \frac{1}{3e^{-x}} = \frac{1}{3}e^{x}$	
	$t = \frac{1}{3} \int e^{x} dx$ $= \frac{1}{3} e^{x} + c$	
-	$\omega ken t = 0 X = 0$	1
	$0 = \frac{1}{3} + C$ $0 = -\frac{1}{3}$	
	$4 = \frac{1}{3}e^{x} - \frac{1}{3}$ $3t = e^{x} - 1$	·
	$e^{X} = 3\ell + 1$ $x = \ln(3\ell + 1)$	ì
(m)	$v = \frac{dx}{dt}$ or when $t = 3 \times 10^{10}$	to
	$v = \frac{3}{3\ell+1} : v = 3e^{-\ln 10} \\ = \frac{3}{3}e^{-\ln 10}$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a l
	$a = \frac{dV}{dt}$ $= -3(3t+1)^{-2}.3$ $= -9e^{-1/2}$ $= -9e^{-1/2}$	10
	$=-\frac{9}{(36+1)^2}$ $z-9. \bar{p}0$	
	$= \frac{-9}{(9+1)^2}$	m/s r
	$= -0.09 \text{ms}^{-2}$	1

Q	Solution	Marks/Comments
06		
(1)	$v^2 = 12 + 4x - x^2$	
	$now \ a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	
	$\ddot{x} = \frac{d}{dx} \left(6 + 2x - \frac{x^2}{2} \right)$	
	= $2-x$ = $-1(x-2)$: SHM. as $a=-n(x-1)$))
(11)	Centre of motion is $x=2$ where $\ddot{x}=0$	1
	$n=1$:, Period $T = \frac{2\pi}{n} = 2\pi$	1
	extremities of motion where v=0	
	$12 + 4x - x^2 = 0$	
	(2+x)(6-x)=0	
	$\lambda x = -2, 6$	i
!	: amplitude= 4	
(m)		1
	X = 4 Sin(t+0) + 2	
	when t = 0 x = 6 (given)	
	: 6 = 45in0 + 2	
	: SINO = 1	
	$O = \frac{T}{2}$	
	$\chi = 4 \sin\left(t + \frac{\pi}{2}\right) + 2$	

α	Solution	Marks/Comments
61)	V=40	
	110 -> 4-10->	
(1)	$X = 40t Cos\theta$ $y = 40t sin\theta - 5t^2$	
(11)	when ball returns to horzontal $y = 0$: $40 \pm \sin \theta - 5 \pm \frac{1}{2} = 0$	
	$st(8sm\theta-t)=0$ $t=0,8sm\theta$	t
	when $t = 8\sin\theta$ $\chi = 320\sin\theta\cos\theta$ = $160\sin2\theta$ (Note: $\sin2\theta = 2\sin\theta\cos\theta$)	1
(111)	X = 100	
	16 Sin20 = 100 Sin20 = 5	
	$20 = 39^{\circ}$, 141° (nearest degree) $\theta = 19^{\circ}$, 71° (nearest degree)	1
	1L = 120 $160 Sin 20 = 120$	
	$SIn2\theta = \frac{34}{4}$ $2\theta = 49^{\circ} 131^{\circ} (nearest deg)$ $\theta = 24^{\circ} 66^{\circ} (nearest deg)$	1
	: 19° < 0 < 24° OR 66° < 0 < 71°	1

		Marks/Comments
Q	Solution	Marks/Comments
Q7a)	$P(\text{one six on first rell}) = {}^{4}C_{1}(\frac{5}{6})^{3}(\frac{1}{6})^{1}$ $= 0.39 (2dp)$	1
(11)	P(2 sixes on first roll and no 6's on second roll) = ${}^{4}C_{2}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)^{2} \times {}^{2}C_{0}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)^{0} \stackrel{!}{=} 0.0804$ P(151x on first roll and one 6 on second roll)	1
	$= \frac{4c}{6} \left(\frac{5}{6} \right)^{3} \left(\frac{1}{6} \right)^{4} \times \frac{3c}{6} \left(\frac{1}{6} \right)^{4} = 0.1340$	1
	$P(\text{no b's on first roll and two 6's on second roll})$ = ${}^{4}C_{0}(\frac{5}{6})^{4}(\frac{1}{6})^{0} \times {}^{4}C_{2}(\frac{5}{6})^{4}(\frac{1}{6})^{2} = 0.0558$: $P(\text{two sixes overall}) = 0.0804 + 0.1340 + 0.0558$ = $0.27(2dp)$	1
b-1)	$\frac{\chi^{n} + \chi^{n+2}}{1 + \chi^{2}} = \frac{\chi^{n}(1 + \chi^{2})}{1 + \chi^{2}}$ $= \chi^{n}$ $= \int_{0}^{1} \frac{\chi^{n}}{1 + \chi^{2}} dx$	1
	$I_0 = \int_0^1 \frac{1}{1+x^2} dx$ $= \int_0^1 \frac{1}{1+x^2} dx$	1

Q	Solution	Marks/Comments
Q7B	!	
(11)	$I_n = \int_0^1 \frac{x^n}{1+x^n} dx \qquad I_{n+2} = \int_0^1 \frac{x^{n+2}}{1+x^n}$	
	$\int_{0}^{\infty} \frac{I_{n} + I_{n+2}}{I_{n} + I_{n+2}} = \int_{0}^{\infty} \frac{\chi^{n}}{I + \chi^{2}} dx + \int_{0}^{\infty} \frac{\chi^{n+2}}{I + \chi^{2}} dx$	1
	$= \int_0^1 \frac{x^n + x^{n+2}}{1 + x^n} dx$	
	$= \int_0^1 x^n dx \text{from part(i)}$	
	$= \left(\frac{x^{n+1}}{n+1}\right)_0^{1}$	
	$= \frac{1}{n+1}$	
3.	from 2. put $n=0$ $ \vdots I_0 + I_2 = \frac{1}{0+1} $	
	$\frac{1}{10} I = 1 - I_0$	
	$=1-\overline{U_4}$	1
	$oR I_2 = \int_0^1 \frac{x^2}{1 + x^2} dx$	
	$= \int_0^1 \frac{1+x^2-1}{1+x^2} dx$	
	$= \int_0^1 dx - \int_0^1 \frac{1}{1+x^2} dx$	
	$= \left[x \right]_0' - \left[\tan^- x \right]_0'$	
	$= l - \frac{\pi}{4}$	2 (1)

Q	Solution	Marks/Comments
	$\frac{\binom{3n}{k}}{\binom{3n}{k-1}} = \frac{3n!}{\binom{3n-k+1}{k-1}!} \times \frac{(3n-k+1)!(k-1)!}{3n!}$	1
	$= \frac{3n-k+1}{k}$	·
	$(ii) \frac{T_{k+1}}{T_{R}} = \frac{\binom{3n}{k}}{\binom{3n-k}{k-1}} \frac{3n-k}{4} \frac{k}{4} \frac{k}{4}$	
	$= \frac{\binom{3n}{k}}{\binom{3n}{k-1}} \cdot \frac{b}{a}$	
	$= \frac{3n-k+1}{k} \cdot \frac{1}{2} foom(i)$	
	$= \frac{3n-k+1}{2k}$ for mereasing coefficients	ents
	Now $\frac{3n-k+1}{2k} > 1$ for increasing coefficients $\frac{3n-k+1}{2k} > 2k$ $(k>0)$	
	$k < n + \frac{1}{3}$ $k < n + \frac{1}{3}$ $k = n \text{ for greatest coefficient}$	n/
	: greatet Coefficient = $\frac{3n}{c} \left(\frac{1}{2}\right)^n$	
	Note: $\sqrt{k+1} = \frac{3n}{k} a \frac{3n-k}{k} \frac{1}{k} \frac{a=1}{2}$	1.